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Grain-size dependence of fracture stress in 
anisotropic brittle solids 

V. D. KRSTIC 
Department of Metallurgical Engineering Queen's University, Kingston, Ontario, Canada 

The stress concentrations that occur at grain boundaries due to thermal expansion anisotropy 
and elastic stress concentration are discussed, and the stress intensity factor that results from 
these stresses is estimated. The procedure for the stress intensity factor calculation is based on 
the model in which a spherical crystal (grain) is forced into a cavity of equal size possessing 
annular or radial cracks emanating from the boundary. The stress intensity factor equation thus 
obtained is extended to include the effect of elastic stress concentration due to the presence 
of a cavity, and is subsequently used to predict the grain-size dependence of strength in 
anisotropic brittle ceramics. In assessing the degradation of strength with increasing grain size 
in non-cubic ceramics, it is shown that, in addition to grain size, the effect of pre-existing 
crack size must also be considered. Cubic ceramics, on the other hand, are known to exhibit 
no thermal expansion anisotropy and, based on the present model, their strength is predicted 
to be governed by the pre-existing flaw size, rather than the grain size. 

1. Introduction 
It is well known that non-cubic polycrystalline ceramics 
exhibit a strong grain-size dependence of strength [1, 2], 
whereas cubic ceramics show only weak grain-size 
dependence in a wide grain-size range [3]. The strong 
grain-size dependence of strength in non-cubic poly- 
crystalline ceramics is believed to be associated with 
thermoelastic stresses developed as a result of thermal 
expansion anisotropy, which is also known to cause 
spontaneous microcracking [4, 5]. This microcracking 
can be suppressed in a single-phase material if the 
average grain size is kept smaller than some critical 
value [2, 6]. In polycrystalline materials possessing 
second-phase particles or inclusions, microcracking 
can likewise be prevented if the second-phase or inclu- 
sion size does not exceed a critical value [7, 8]. Even 
approximate predictions of the grain- or particle-size 
dependence of spontaneous cracking and the material's 
capability of supporting stress is of great significance 
if strong and thermal shock-resistant material is to be 
designed. 

The spontaneous cracking in two-phase systems 
possessing second-phase particles of different thermal 
expansion, and in a single-phase anisotropic ceramic, 
have been analysed and modelled by a number of 
authors [8-12]. All these models concerned the role of 
internal stresses and the grain-size effects on micro- 
crack initiation without the presence of external 
stresses. However, in many practical situations the 
microstructural features responsible for spontaneous 
cracking, which are sub-critical in the absence of 
external stress, become critical when subjected to 
applied stress. This will normally lead to undesirable 
premature failure of the structural component. 
Furthermore, based on the premise that the inherent 
flaw size is equivalent to the grain size, the grain-size 
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exponent from the strength against grain-size plot 
should always be -1 /2 .  However, the experimental 
data in a wide variety of polycrystalline ceramics have 
shown that the grain-size exponent is not - 1/2 [1, 13] 
and that the crack size is not limited by the grain size 
[1, 14, 15]. 

The aim of the present paper is to further examine 
the mechanism of crack extension in the presence of 
boundary stresses arising from anisotropic thermal 
contraction, and also to make some quantitative 
predictions regarding the extent that these stresses 
should be expected to influence the fracture-stress- 
grain-size relationship in such solids. 

2. Condition for spontaneous cracking 
in two-phase systems 

For a two-phase system containing a single, isolated 
spherical particle of radius R, and with thermal expan- 
sion coefficient smaller than that of matrix (~p < C~m), 
the total stress intensity factor at the tip of an annular 
flaw emanating from the particle-matrix interface was 
found to consist of two terms. The first term is due to 
a radial component of the stress concentration outside 
the spherical boundary, and is given [12] by the 
expression 

2PRl/2 
K[ - =,/2 [1 + (s/R)] '/2 

! "~1/2 ~ 
x [1 - ( 1  [1 +(s/R)]2j j (1) 

where P is the thermoelastic stress and s in the annular 
flaw size. The second term is due to the tangential 
component of thermoelastic stress concentration and 
may be expressed [12] in the form 

259 



1 . 2  i 

lO 
K t 

0.8 

.~0.6 

0.~ 

0.2 

0.001 0.01 0.1 1 10 100 1000 

Figure 1 Stress-intensity-factor solution for annular crack emanat- 
ing from a spherical inclusion. 
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The total stress intensity factor is obtained by the 
addition of  Equations 1 and 2: 

Kt = K;+Ket  

2PR I/2 ~ (s/R)]I/2 I i  ( i  1 ),/2] 
([1 + _ _ -  [1 + -(s/R)] 2} J 

1 ( 1 ),/2~ 
+ 211 + (s/R)] 3/2 1 1 ÷ (s/R)]2J J (3) 

Fig. 1 illustrates the change of normalized stress inten- 
sity factor as a function of s/R. Close examination of 
Fig. 1 and Equation 3 leads to several important 
conclusions. First, it is immediately evident that the 
stress intensity factor due to the tangential component 
of stress concentration (K~t) is much smaller than the 
stress intensity factor due to the radial component 
(/Ct). This means that if only Kt ° is used to define the 
critical condition for spontaneous cracking, without 
taking into account the other component of  stress 
intensity factor (Kt), the total stress intensity factor 
wili appear to be so small that in most practical situ- 
ations the crack would hardly be initiated and spontan- 
eous cracking would never be observed. For  example, 
in the case of polycrystalline alumina possessing frac- 
ture toughness K~c ~ 4 M P a m  1/2, with a maximum 
grain size D = 100#m and s i r  = 0.1, a residual 
stress of P = 2000 MPa would be required in order to 
initiate crack extension. Even if single-crystal values 
for fracture toughness are used (K~c ~ 2MPaml/2), 
residual stresses in excess of P = 1380MPa are 
required to cause crack extension. However, the maxi- 
mum thermoelastic stress that may develop in poly- 
crystalline alumina as a result of thermal expansion 
anisotropy is found to be of the order of 200 to 
300 MPa [5, 13]. At these stresses, a critical grain size 
required to initiate crack extension would be around 
3 ram, which is several orders of magnitude larger than 
the observed critical grain size for spontaneous crack- 
ing in a polycrystalline alumina, namely 100/~m [5]. 
Thus, it is clear that the stress intensity factor due to 
the tangential component of stress concentration 
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alone is not capable of  explaining the phenomenon 
either on physical grounds or quantitatively. It is 
therefore considered necessary to take into account 
the radial component of  the stress concentration (crr) 
which acts along the grain boundary, but also in the 
direction to open the crack. For  such a crack-particle 
geometry, it is self-evident that the half crack length 
(C) consists of a cavity radius (R) and the length of an 
annular flaw, namely (R + s). The major benefit of 
this approach is that it gives a strong particle-size 
dependence of  spontaneous cracking and it also facil- 
itates the inclusion of the entire residual stress (P) into 
the equation for the grain-size dependence of strength. 

3. Condition for crack extension in 
anisotropic solids 

Although Equation 3 has been developed for the case 
of a spherical inclusion dispersed in a brittle matrix of  
higher thermal expansion [12], it can also be used to 
interpret the data on the spontaneous cracking of a 
single-phase material with thermal expansion an- 
isotropy [13]. Statistically, in any anisotropic polycrys- 
talline solid a certain number of grains will be oriented 
with respect to their neighbouring grains, such that the 
axis of minimum thermal contraction of  the central 
grain is parallel to the axis of maximum thermal con- 
traction of the surrounding grains (Fig. 2a). This con- 
dition leads to the generation of mostly compressive 
stresses within the central grain (A), while the neigh- 
bouring grains will be subjected mostly to tensile 
stresses. Under such circumstances, an annular flaw is 
likely to be formed by the linking of small radial 
cracks on individual neighbouring grains. Clearly, due 
to random orientation, some of the surrounding 
grains may be unde r compression while the central 
grain is locally under tension. This grain orientation 
problem was analysed by Davidge [16], who showed 
that the maximum misorientation and therefore the 
maximum anisotropic stress causing crack initiation 
does not depend only on the maximum difference in 
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Figure 2 Polycrystalline aggregate containing annular flaw. (a) Hex- 
agonal grain under compression; (b) opening of the crack due to 
thermal expansion. ~, and ~c are the coefficients of thermal expansion 
along the a and e axes, respectively. 



thermal expansion anisotropy but also on the grain 
orientation. 

Although the stress-field interaction of randomly 
distributed grains in an anisotropic solid is a very 
complicated problem, a better understanding of the 
behaviour of  such solids under applied stress would be 
of considerable value. It has already been shown [13] 
that when an external stress is applied to an anisotropic 
solid, an additional positive stress intensity factor is 
generated and the total stress intensity factor is 
obtained by the addition of  the thermoelastic stress 
intensity factor due to thermal expansion anisotropy, 
Kt (from Equation 3), and the stress intensity factor 
due to the applied stress, K,: 

K = Kt + K, (4) 

Previously [13], this problem was treated by consider- 
ing that the central grain is forced into a cavity of 
diameter D = 2R surrounded by the annular flaw of 
length s (Fig. 2), without taking into consideration the 
effect of  a stress concentration due to the presence of 
a cavity. In the present analysis, the previous model 
[13] for microfracture is extended to include the effect 
of elastic stress concentration due to the applied stress, 
and to further examine the relative contribution of 
both the thermal and the elastic stress concentrations. 
In what follows, it will be assumed that only the 
tangential component of the stress concentration due 
to the presence of a spherical cavity is imposed on the 
crack in the direction to open it. This tensile com- 
ponent of the stress concentration, ao, due to the 
presence of a cavity [17] is 

4 - 5v 9 
a0 = a _2(7 5v) + 2(7 -- 5v) + 1 

(x/> R) (5) 

where a is the applied stress, R the cavity radius, v the 
Poisson's ratio and x the distance from the centre of 
the cavity. 

For an axisymmetric stress distribution problem such 
as is the case with an annular crack of width s, 
the stress intensity factor is given [18, 19] by the 
expression 

2 fc a(x)dx 
Ka (6) 

(~c),/2 30 ( c  ~ _ x2),/~ 

where C = R + s and a(x) is the stress distribution. 
The stress intensity factor due to the applied stress 
(K,) can now be obtained by substituting Equation 5 
into Equation 6. This procedure yields (from x = R 
to x = C), 

9 
× ~2 5v) ~ + 2(7 - 5v) 

1 

When expressed in terms ofs/R, Equation 7 reads (for 
v = 0.2) 

2..,,,(, (, 
Ka = - T v -  

( 1 3 
x 1 + 4[1 + (s/R)] 2 + 411 + (s/R)] 4 

1 

The total stress intensity factor obtained as a result of 
the combined effects of the residual thermal stress due 
to the presence of thermal expansion anisotropy and 
the applied stress is (from Equation 4) 

2PR1/2 
K t o t  - -  ~ 1/2 

1 l 
+ 211 + (s/R)] 3/2 [l(s/R)]2] J 

+ ~ [l + (s/R)] ~ 

1 3 
1 + 411 + (s/R)] z + 411 + (s/R)] 4 

X 

;)2 q}) 
(9) 

Fig. 3 illustrates the variation of normalized stress 
intensity factor with s/R. Inspection of Fig. 3 indicates 
that the thermoelastic stress intensity factor (Kt) drops 
very fast with s/R, reaching an extremely small value 
at s/R > 10. On the other hand, the elastic stress 
intensity factor (Ka) increases continually with s/R, 
ultimately reaching the value for an internal circular 
crack at s/R ~ ~ .  For the other extreme, when siR 
0, the elastic stress intensity factor solution (Ka) 
approaches zero but the total stress intensity factor 
(Ktot) attains a finite value due entirely to the thermal 
stress intensity factor (Kt), which becomes the domi- 
nant term in controlling the overall criterion for crack 
extension. 
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Figure 3 Variation of stress intensity factor (from Equation 9) with 
s/R. 
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For a critical condition of crack initiation, Kto t = 
K l c =  [27E/(1 - v)] v2 and o- = o-f, the strength of an 
anisotropic solid is 

1 ( ~zTE )]/2 @t 
o-f = ~ D[1 + (s/R)](1 - v 2) - P ~  (10) 

where o-f is the fracture stress, E the Young's modulus, 
the fracture surface energy, D the grain size and 

P = 2E Ae AT/3(1 - v) where Ac~(= ~max -- 0%in) is 
the thermal expansion coefficient difference and AT the 
temperature difference; also 

( 1 ~1/2( 1 

qb e = 1 [1 + (s/R)]2] 1 + 411 + (s/R)] 2 

1 3 + ) 
+ 411 + (s/R)] 4 5 

( 
1 1 

- \ [1 + (s/R)] z /  

+ 2[1 + s/R)]2 \1 [1 + (s/R)] 2 ] 

@t 

When using Equation 10, it is important to realize that 
the residual stress (P) arising from thermal expansion 
anisotropy refers to a maximum value obtained from 
the difference between the axes of maximum and mini- 
mum thermal expansion. The predicted change of 
fracture stress (from Equation 10) with grain size is 
given in Fig. 4. As expected, Equation 10 and Fig. 4 
show a strong siR dependence of fracture strength, 
with the most severe strength degradation being at 
small grain sizes. In this context it may be of  interest 
to note also a strong siR dependence of stress con- 
centration factors (~t and ~e)" AS can be seen from 
Fig. 5, the ratio ~t/Oe is the largest at small s/R, 
whereas at large siR it approaches zero. This means 
that the residual stress arising from the thermal expan- 
sion anisotropy influences the grain-size dependence 
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Figure 4 Predicted variation of strength (from Equation 10) with 
grain size for a given s/R. 
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Figure 5 Typical change of ~t/qb~ with sir in anisotropic ceramics. 

of strength only at small siR values. An important 
conclusion that can be inferred from this is that, in 
fine-grained solids in which the pre-existing flaw size 
(s) is normally larger than the grain size (s >> R), the 
effect of residual stresses will be negligible. 

It can further be shown that for siR > 1, the elastic 
stress concentration factor (~e) approaches unity and 
Equation 10 reduces to 

o-f = D [ l + ( s / R ) ] ( 1 - v  2) - P O t  (11) 

Equation 11 recovers the result obtained elsewhere 
[13] by applying the same fundamental approach but 
without taking into account the contribution of  elastic 
stress concentration. Again, as with Equation 10, at 
large siR (siR > 1 to 2), ~t becomes very small and so 
the effect of residual stress from thermal expansion 
anisotropy becomes negligible. 

4. Crack ini t iat ion and stress relaxat ion 
process 

For the crack-grain configuration illustrated in Fig. 2, 
it is self-evident that, during loading, crack surfaces 
will open and residual stress relaxation will take place. 
The extent of stress relaxation is determined by the 
maximum crack opening displacement at distance 
C = R + s from the crack tip and is given [20] by the 
expression 

A - 2 ( 1 -  v2)K' (R  + m s ) l / 2  
~E- (12) 

where K~ is the stress intensity factor and E is the 
Young's modulus of the matrix. As expected, Equation 
12 shows that the crack opening displacement depends 
on the crack length (R + s), and for long cracks, 
relatively large openings are required before the crack 
can propagate. 

Assuming no strain-field interaction effects of 
neighbouring grains, the maximum linear thermal 
expansion of a grain is 

A t = D Ac~ AT (13) 

where A~ and AT are as defined earlier. Based on 
Equation 12, crack initiation will occur when the 
crack opening displacement reaches a critical value Ac. 
This condition is represented by the expression 

D A~ AT - 2 ( 1 -  vZ)K'c ( ~ - ~ - )  1/2 
E (14) 
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Figure 6 Variation of (---) critical crack opening displacement 
(A~) and ( ) linear thermal expansion (At) with grain size and 
pre-existing flaw size (s). 

where Km is the single-crystal or the grain-boundary 
fracture toughness, depending on the location of a 
crack tip. Fig. 6 illustrates the change of a critical 
crack opening displacement (Ac) and the maximum 
linear thermal expansion of the grain (At) as a func- 
tion of grain size, pre-existing flaw size (s), and the Ac~ 
value. Due to the different grain-size dependences of 
the linear thermal expansion of the grain (A 0 and the 
critical crack opening displacement (Ac) (linear com- 
pared with square-root), Fig. 6 shows that there is a 
region of grain sizes in which the opening of the crack 
is larger than the total linear thermal expansion of the 
grain diameter, and the residual stress will be com- 
pletely relieved on loading prior to crack initiation. 
When the total linear thermal expansion of the grain 
becomes equal to the critical crack opening displace- 
ment, At = Ac, the central grain in Fig. 2, which was 
originally subjected to a compressive stress, will now 
be subjected to uniform tension. If, at this stage, the 
stress intensity factor at some pre-existing flaw located 
within the grain (A) becomes larger than at the annular 
flaw, (s), crack extension may first occur in the grain 
rather than from the annular or radial flaw. 

The critical grain size (D~) for crack extension based 
on crack opening displacement can be obtained by 
solving Equation 14 for D. This procedure yields 
(positive solution of quadratic equation) 

(1 - v 2)2K2 c 
O c - -  nE2(A~ AT) 2 

/ ( l  - v ) Ktc 4(1 - 

(15) 

5. Discussion and comparison with 
experiments 

So far, in interpreting the data on grain-size depen- 
dence of strength in polycrystalline, single-phase 
ceramics, the practice has been to assume that the flaw 
size is equal to the grain size. Based on this assump- 
tion, it follows that the grain-size exponent from the 
strength against grain-size plot should always be 
-0 .5 ,  regardless of the material and the grain-size 
range. However, the experimental data reported for a 
wide variety of polycrystalline ceramics have shown 

that the grain-size exponent can vary from a very 
small negative value of - 1 / 7 ,  for a polycrystalline 
magnesia, to a very large negative value of - 1, for a 
polycrystalline beryllia [1]. This wide variation of 
grain-size exponents was attributed to variations 
in the degree of thermal expansion anisotropy. 
Magnesia, which is known to be the most isotropic 
material, has the lowest grain-size exponent and 
exhibits weak grain-size dependence of strength, at 
least in the grain-size range between a few micro- 
metres to 400 pm [21]. Almost identical results were 
reported for a polycrystalline FeO also known to be a 
highly isotropic material [22]. These results clearly 
demonstrate that the grain boundary itself does not 
necessarily represent the barrier for crack extension, 
and that the inherent flaw size is likely to be deter- 
mined by the other microstructural features such as 
micropores, second-phase particles, etc. Non-cubic, 
polycrystalline solids, on the other hand, are known to 
exhibit varying degrees of thermal expansion an- 
isotropy and show a strong grain-size dependence of 
strength. 

Since the primary objective in the present paper is to 
develop the relationship between the strength and the 
grain size in non-cubic solids, we will first concentrate 
on a polycrystalline alumina known to possess a 
moderate degree of anisotropy. Fig. 7 illustrates the 
predicted and measured variations of strength with 
grain size. Before discussing the results of Fig. 7 it is 
considered appropriate at this point to briefly examine 
the condition of crack initiation as defined by Equation 
3. Inspection of Equation 3 shows that the thermal 
stress intensity factor of a solid containing a single 
grain with a lower coefficient of thermal expansion is 
a strong function of grain size, and for a given residual 
stress P and the fracture toughness Gc the crack initi- 
ation will occur when the grain size reaches a critical 
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Figure ? Comparison of  predicted effects of grain size on strength 
with (o) data obtained for polycrystalline alumina [21]. Although 
fracture is expected to occur from the largest flaw size (largest 
R + s), predictions are based on the average grain size. The present 
model shows that fracture will occur when either anitotropic stress 
or crack length reaches a critical value. Due to the fact that the 
internal stresses are dependent on the grain orientation and the 
stress-field interaction effects, the fracture may not necessarily occur 
from the largest flaw size. 
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value D~. According to Equations l0 and 11, before the 
grain size reaches a critical value there will be a region 
of continual decrease of siR as the grain size increases, 
provided that the inherent flaw size remains indepen- 
dent of grain size. Although the inherent flaw size may 
vary from sample to sample due to different fabri- 
cation conditions, observations made on a number of 
polycrystalline ceramics indicate that the fracture 
normally originates from pre-existing flaws which are 
usually different from the average grain size [1, 23, 24]. 
The difference between the average grain size and the 
inherent flaw size appears to be greatest in the case of 
isotropic polycrystalline ceramics such as MgO [21] 
and FeO [22]. For example, an increase of grain size 
from approximately 6 to 365 #m has led to a minor 
change of inherent flaw size, namely 6 to 37#m, 
indicating no real connection between the grain size 
and the flaw size [13]. In anisotropic, polycrystalline 
titania, on the other hand, a much smaller difference 
between calculated critical crack size (from the 
Griffith equation*) and measured grain size has been 
reported [1]. Furthermore, in the same material, 
cracks were found to terminate frequently at the centre 
of a grain rather than at the gain boundaries. 

Inspection of Fig. 7 shows that the most severe 
degradation of strength occurs at small grain sizes, 
below ~ 20/tm, and as the grain size increases the 
strength levels off, becoming almost independent of 
grain size up to 120#m size. When the grain size 
reaches approximately 120 #m, the strength appears 
to drop abruptly to a lower value and thereafter it 
remains almost unchanged with further increase of 
grain size. It is of interest here to point out the co- 
incidence of the grain size at which the sudden drop in 
strength occurs and the critical grain size for spon- 
taneous cracking normally observed in polycrystalline 
alumina [5, 25]. 

In correlating the experimental data for the grain- 
size dependence of strength with predicted variation 
from Equation 10, a constant siR was first assumed 
(dashed lines in Fig. 7). However, at constant s/R, 
good correlation between predicted and measured 
strength is found only at small grain sizes (below 
approximately 20 ym) and at large s/R values, s/R = 
10. Particularly poor correlation is obtained at small 
grain sizes and at small s/R values. When no change of 
pre-existing flaw size with grain size is assumed 
(s = constant), a continual increase of grain size leads 
to an equivalent decrease ofs/R resulting in a levelling 
off of the strength, as shown in Fig. 7 (solid line). 
When the grain size reaches a critical value of 

120/~m, a spontaneous crack extension occurs caus- 
ing a instantaneous increase of siR and a correspond- 
ing drop in strength. The new crack length is now 
sub-critical and the grain size must be increased to a 
new value before the crack again moves instan- 
taneously. At this point, the residual anisotropic stress 
will be relaxed leaving essentially a stress-free solid. 
Further increase of grain size, beyond the critical size, 
has little effect on the strength in accordance with the 
predictions. 

* It should be noted that the critical crack size calculated from the 
in the present model. 
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Figure 8 Comparison of (O) experimental data for the grain-size 
dependence of strength in polycrystalline TiO= [1] with predicted 
effects of  grain size on strength. 

Due to limited data points and the considerable 
scatter in Fig. 7, it was difficult to accurately predict 
the critical grain size at which an instantaneous degra- 
dation of strength occurs. In spite of this a reasonably 
good agreement is found between the grain size for 
instantaneous degradation of strength from Fig. 7 
(D c ~ 120/tin) and the critical grain size for spon- 
taneous cracking (De ~ 150 #m) determined by direct 
observations [5, 25]. Similar general trends were 
observed in a highly anisotropic, polycrystalline titania 
known to exhibit a strong grain-size dependence of 
strength. For comparison, Fig. 8 shows the predicted 
and measured variations of strength with grain size in 
polycrystalline TiO2. Assuming no change of pre- 
existing flaw size with grain size, a continual increase 
of grain size leads to an adequate decrease of s/R, 
resulting in a strength degradation at a decreasing rate 
(solid line in Fig. 8). At approximately 50 #m grain 
size, an instantaneous drop in strength occurs and this 
appears to coincide with a phenomenon of spon- 
taneous cracking normally observed in polycrystalline 
titania [1, 5]. At this stage a crack is initiated and, due 
to kinetic energy, will increase its length to a value 
which is larger than the grain size, leaving sir nor- 
mally much larger than the grain size (s/R> 1). Any 
subsequent increase in grain size beyond the critical 
size will have a minor effect on a material's strength, 
simply because the contribution of grain size to the 
total crack length is also small. 

Inspection of Figs 7 and 8 shows that the changes of 
strength with grain size in polycrystalline alumina and 
titania exhibit the same trend, but the instantaneous 
drop in strength at a critical grain size appears to be 
appreciably larger in titania samples. Although the 
exact nature of this phenomenon is beyond the scope 
of the present theoretical analysis, the extent of post- 
initiation crack propagation and thus the level of 

Griffith-type equation refers to a total crack length equal to C = R + s 

2 6 4  



strength degradation at critical grain size is believed to 
be associated with the kinetic energy of the crack and 
the phenomenon of fast fracture. 

The lack of equivalence between the grain size and 
the pre-existing flaw size has an added consequence in 
that the grain-size refinement below the inherent flaw 
size in cubic, isotropic solids may not have any bene- 
ficial effect on their strength. Unlike cubic ceramics, 
where the inherent flaw size responsible for fracture is 
independent of grain size, in non-cubic ceramics both 
the pre-existing flaw size and the grain size must be 
controlled. 

As shown in the previous section, an alternative 
approach for predicting the critical grain size for spon- 
taneous cracking in anisotropic solids, and therefore 
the critical grain size for an instaneous drop in 
strength, is to employ a crack opening displacement 
concept. The incidence of stress relaxation that is 
liable to occur when an external stress is applied may 
be obtained by comparing the critical crack opening 
displacement (Equation 12) and the linear thermal 
expansion of a grain (Equation 13) as a function of 
grain size. This is done in Fig. 9 for polycrystalline 
titania by substituting appropriate values of E = 
30 x 104MPa, K~c = 2.5MPam 1/2, v = 0.22, AT = 
1200 °CandAc~ = 19 x l0 7 (o c ) - l  in Equation 10. 
Examination of Fig. 9 shows that, for flaw sizes (s) in 
the range 10 to 100#m, the grain size at which the 
critical crack opening displacement becomes equal to 
the total linear thermal expansion of the grain is 
between 18 and 46#m. These values compare quite 
favourably with the critical grain size for spontaneous 
cracking in polycrystalline TiO2 determined by other 
means [1, 5]. For example, Kichner and Gruver [1] 
reported the commencement of microcracking at D = 
20 to 35#m as determined by direct optical obser- 
vations, and McPherson [26] detected the first micro- 
cracks at D > 8 #m by using X-ray techniques. These 
and the earlier observations of Charvant and Kingery 
[27], showing some cracking in their TiO2 with 
D < 30#m, are reasonably consistent with the 
predictions given in Figs 8 and 9. 

As Equation 14 and Fig. 9 show, below approxi- 
mately 18 to 46 #m grain size the critical crack opening 
is higher than the total linear thermal expansion of the 
grain. In this region, the residual stress relaxation will 
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Figure 9 Variation of ( - - - )  critical crack opening displacement 
(Ac) and ( ) linear thermal expansion (At) with grain size in 
polycrystalline TiO> 

take place simultaneously with opening of the crack, 
followed by pure elastic extension until the critical 
crack opening is reached and catastrophic fracture 
ensues. 

In a coarse-grained material, D > 46 #m, the total 
linear thermal expansion of the largest grain, or of the 
most favourably oriented grain (At) , is larger than the 
critical crack opening displacement and a spon- 
taneous crack extension will occur on cooling from 
high temperature prior to stressing. This process will 
be followed by residual stress relaxation, leaving an 
almost stress-free structure. Hence, in both grain-size 
regions, below and above De, a part or all of the 
residual stresses will be relieved during loading and 
the overall strength of a solid will be governed mostly 
by the pre-existing crack length and the grain size as 
given by the Equation 14. 

Clearly the crack opening displacement and 
therefore the residual stress relaxation process is also 
determined by the grain orientation and the level of 
constraints imposed by the neighbouring grains. For 
example, while the external loading may relieve the 
residual stresses in those grains under compression, it 
may simultaneously develop tensile stresses in the 
neighbouring grains. Nevertheless, the above analysis 
serves to indicate the importance of crack opening 
displacement in predicting the critical grain size for 
spontaneous cracking, and also in interpreting the 
data on grain-size dependence of strength. 

These general findings regarding the role of residual 
stresses and grain-size dependence of strength appear 
to be of similar, if not identical, nature in interpreting 
the data on grain-size dependence of fracture energy. 
Recent comprehensive fracture studies in cubic cer- 
amics have shown no variation of fracture energy with 
grain size [28], similar to the grain-size dependence of 
strength. Non-cubic ceramics, on the other hand, 
exhibit a rather strong grain-size dependence of frac- 
ture energy (7), with 7 passing through maxima that 
are typically 100 to 400% of the values at fine or large 
grain size. This variation of fracture energy with grain 
size was attributed to microcracking induced by the 
combined effects of the applied stress and the residual 
stress generated by the thermal expansion anisotropy 
[28]. 

6. Conclusions 
A micromechanical model is presented to describe the 
grain-size dependence of strength in anisotropic poly- 
crystalline ceramics. The model considers that a 
spherical cavity possessing an annular flaw is occupied 
by a grain of equivalent size. Based on this crack- 
grain assembly, the stress intensity factor and 
therefore the fracture strength of a polycrystalline 
solid is found to be governed by the residual stress 
concentration arising from thermal expansion an- 
isotropy and the elastic stress concentration which is, 
in turn, determined by the flaw to grain size ratio. 
According to the present model, at small grain sizes 
the inherent flaw size is normally larger than the grain 
size, whereas at large grain sizes the inherent flaw size 
(s) is essentially independent of grain size. Before 
reaching a critical grain size for spontaneous cracking, 
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the increase of grain size forces s/R to decrease, result- 
ing in a strength degradation at a decreasing rate. 
When a critical grain size for spontaneous cracking 
under an applied stress is reached, an instantaneous 
increase of crack length occurs followed by a decrease 
of strength in the same fashion. After initiation, the 
extent of crack propagation before arrest, and thus the 
severity of strength degradation due to spontaneous 
cracking, is shown to be governed by the degree 
of thermal expansion anisotropy and the grain-size 
distribution. 

An alternative criterion for crack extension based 
on crack opening displacement has also been 
developed, and tested against experimental data on 
spontaneous cracking in anisotropic ceramics such as 
TiO2 and A1203. In addition to predicting the critical 
grain size for spontaneous cracking, the crack opening 
displacement concept provides an effective mechanism 
for stress relaxation operating in the course of external 
loading. 
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